

ESR7 UPDATES

MOLECULAR DYNAMIC AND MONTE CARLO STUDY OF WATER IN HYDRATES DURING DESORPTION AND RE-SORPTION

Presented by: Arifah Binti Abdu Rahaman

Academic Supervisor: Dr. D. Faux

Co-Supervisor:

Prof. P. McDonald

Industrial Supervisor:

Dr. A. Vichot

H2020-MSCA-ITN-2017 Grant Agreement no. 764691

Outline

- Introduction
- Objectives
- Research Overview
- Theory
- Methodology
- Results
- Conclusion and Future Works
- ERICA Outreach and Secondment Plan

- NMR is a powerful method to characterise water transport in porous media.
- However, it requires a model to understand the NMR relaxation times of water in cement pores.
- Two important issues in cement:-
 - I. Paramagnetic ions in/on the solid surface.
 - II. The effect of "structured water" around ions in solution which may not be paramagnetic.

Paramagnetic (Fe ³⁺ , Mn ²⁺)					
		in solution	in solid		
Bulk		×	-		
Confined		×	\checkmark		

Non - Paramagnetic (Ca ²⁺ , Na ⁺)					
		in solution	in solid		
Bulk		×	-		
Confined		×	Not useful		

★ Objective of the research

- Molecular Dynamics (MD) simulation provides information about the dynamic of water and ion.
- Starting point: water + NaCl

Theory

- There are two spin environments to describe the collection of spins attached to the ion, identified as **inner-sphere**, *is* and **outer-sphere**, *os*.
- This research seeks to produce expressions for the dipolar correlation function, *G*(*t*) comprising contributions from each spin environment.

$$G(t) = Gi_s(t) + Go_s(t) \implies J(\omega) = 2\int_0^\infty G(t)\cos\omega t \, dt \implies R_1 = T_1^{-1} = \frac{1}{3}\beta[7J(\omega_s) + 3J(\omega_l)]$$

First shell: inner sphere Second shell: outer sphere

Methodology

- Molecular Dynamic (MD) simulations for modeling atomistic dynamics.
- Two objectives of the MD simulations:
 - ✓ To test the physics of a theoretical model
 - ✓ To provide guidance for model parametrisation
- The simulations are executed using SPCE model in a cubic box of side length 100 A for 100 ps.
- The simulation cell contains 27000 water molecules, 216 sodium and 216 chloride ions.
- Atomic displacements and the angle β are computed as shown.

Result - Probability Density Function (PDF)

The probability density function shows the data fitting for β obtained from MD simulations and the model. The parametrisation is made using the data set at 5 ps.

Results – Radial Density Function (RDF)

The Radial Density Function graph illustrates the inner-sphere, *is* at distance *a* and the outer-sphere, *os* at distance r > d. Distance $a \approx 3.1$ Å.

Results – Desorption Time Constant, τ_d

The desorption time constant, τ_d is calculated from the gradient indicating the number of hydrogen spins in the inner sphere shell. The τ_d is 50 ps from the graph.

List of parameters for the elucidation of the dipolar correlation function to describe the NMR relaxation rate

Parameter	Terminology	Value	Notes
τ_{β}	τ_β time constant	21 ps	Data fitting at 5 ps
α	Lévy parameter	2	Fit to MD gives 1.81
а	Distance of inner-sphere shell	3.1 Å	Deduced from MD
τ_{d}	Desorption time constant	50 ps	Deduced from MD
D	Diffusion coefficient of water	6.19 x 10 ⁻¹¹ m²/s	Deduced from MD
d	Cut-off distance for os water	3.9–4.2 Å	Estimated from RDF

- The results proved that the key physics behind the theoretical model are well captured to describe the nano-scale dynamics of the paramagnetic/non-paramagnetic and the water.
- In future, the model will predict the frequency dependent spin-lattice relaxation time $T_1(f)$ for a range of paramagnetic/non-paramagnetic to provide fits to experimental data.
- A series of experiments will be executed in Dublin in October 2019 by ESR 5.

Outreach

✓ Outreach program was conducted on 25 July 2019 at University of Surrey.

Secondment Plan

✓ The secondment plan is suspended due to maternity leave.