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|. Introduction and context
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Chloride ingress: A durability issue for reinforced concrete

a ),

Fig.1. Chloride ingress (F. Georget) Fig.2. Corroded steel bars in reinforced concrete

Chloride ingress is the most common reason for steel to corrode especially when
exposed to moisture atmosphere or exterior chlorides (seawater or deicer salts)
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II. Modelling of chloride ingress mechanisms
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Standardized characterization of the diffusion propdgtie
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Fig.5. Total chloride content with respect to the depth for &5 @-(I)ﬂ-
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different blended systems (S. Sui et al. [ CCR 2019 ])

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
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Mathematical justification of the empirical model

Total chloride diffusion profile looks like a diffusion profile

» So why not fit a diffusion equation on it such as Fick’s law:

oC 02C
o = Paoz

Assuming that

s Dis homogeneous
** Boundary conditions are fixed for e.g. Semi-infinite domain

Analytical solution:

C(z,t) = C, erfc (

)
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No clear correlation between D,,,and porosity
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Fig.6. Relationship between apparent diffusion coefficient and
porosity (S. Sui et al. [ CCR 2019 ])
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Binding Mechanisms in chloride transport

Chloride ions can be trapped within the cement pore network through two mechanisms

Chemical binding:

Formation of Fried%izlt
X—Afm + zCl— :,—1— X=

Physical binding

Adsorption of Cl-on C-S-H surface

—Si0 — Ca™ + Cl7 = —Si0 — Ca ']
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Fig.3. Binding mechanisms of chloride in a cementitious material (F. Georget)
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Physical binding VS Chemical binding
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Fig.4. Total chloride proportions in various systems (S. Sui et al. [ CCR 2019
1)
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Alkalinity: A misunderstood pore solution effect on
diffusion
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Fig.7. Relationship between apparent diffusion coefficient and alkali
ions content in pore solution (S. Sui et al. [ CCR 2019 ])

» This correlation is neither obvious nor systematic.
> Need for a better understanding of microstructure’s parameters such as

pore solution or porosity on diffusion processes.
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Deconvoluting transport and chemistry

Reactive transport governing equations

Change in concentration :rtransportHchemistryJ

Separation between matter transport and chemical processes

Simple reactive transport:

afcr] z)(awaﬁn])_ﬁ%ﬂqun

ot Ox Ox ot

l e
Effective Diffusion coefficient D, USUALLY EITTED
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I1l. My project
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Bottom-Up approach
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Fig.8. Chloride transport through different scales (inspired
from Etzold [CCR 2014] et al. and Y. Yang et al. [CCR 2019]
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The Electrical Double Layer

First adsorbed-layer ions V/
N

Calcium ion Compact Diffuse layer Electroneutrality
layer (bulk solution)
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Fig.9. Schematic of the Stern EDL model (Y. Yang et al. 2018) Fig.10. Schematic of the solid phase electrostatic

potential (H. Friedmann et al. 2008)
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The Classical Theory: Poisson-Boltzmann equation

Gauss’ law (Poisson equation):

AT = — 2

€QE

The Boltzmann distribution

p=eNad) . ziCh;exp( 11?;1')

The Debye length L,=1/K (for low C, ;values)

2
2 e NA 2
K™ = > Cpizi

- EoﬁkBT i

Order of magnitude:

L, =0,96 nm for C,=0.1 M
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Classical Theory VS Molecular Modelling

Molecular Modelling
Gouy-Chapman Theory

Molecular
Dynamics

(Poisson-Boltzmann) Monte Carlo

Limited More detailed
* Low concentration electrolytes
Complexity / (up to 01 M for 1:1 A better depiction of the solvent
Validity electrolytes)** (water) molecules
 Symmetric (1:1) electrolytes Accounts for steric forces
* Low surface charge (< 30 uC cm) Valid for highly concentrated
*x asymmetric electrolytes
Modified PB
Extensibility * Better fitting with the molecular Gets better with more accurate
modelling * input data.

* Fails to depict 2:1 electrolytes**

*Y. Yuankai, et al., 2019, "Multiscale modeling of ion diffusion in cement paste: electrical double layer effects."
Cement and Concrete Composites
** Torrie, G. M., and Valleau, J. P., 1982, "Electrical Double-Layers .4. Limitations of the Gouy-Chapman Theory,”
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Characterizing the Stern layer: A Monte Carlo
algorithm

Grand Canonical
Monte Carlo

GCMC
Cz’

- GOMCOC
P = Zz 2iC;

pEEME (1) = =L [ p(t)dt

€QE
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The actual physical binding

Uncharged Wall

Fig.11. Chloride ions transporting in a pore (F. Georget)
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Expected results
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Fig.13. Expected ionic distribution of species in a solution in contact with a negatively charged surface of C-S-H.
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V. Preliminary results and future work
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Preliminary results

* An implemented GCMC code in Python for the better understanding
of Monte Carlo modelling techniques accounting for:

v’ Simplified geometry and morphology of the pores.
v’ Thermodynamic equilibrium of pore solution

v’ Monte Carlo moves for convergence toward equilibrium.
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Future work

* Resolve transport equation at the nanoscale and compute Chloride
nanoscopic diffusion coefficient.

 Validate model with more robust simulation tool.

* |nvestigating a consistent C-S-H microstructure which account for
porosity at both nanoscopic (nm) and microscopic (um) scales.
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Secondments

» April 2020: Design of a validation experiment for the nanoscale
mode| mmm) NTNU

» April 2021: Investigation of the thermodynamic background for
the proper averaging of nanoscale transport information up to the
microstructure scale mms) NTNU

> June to August 2021: Validation of the multiscale model
mmm) Heidelberg Cement
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Outreach: Kids class day at EPFL
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Appendix
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Sustainable and durable cement is an urgent need
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Although eco-friendlier, sustainable cement has to fulfil strength and durability
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Sustainable and durable cement is an urgent need
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Preliminary results
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Fig.12. Distribution of ionic species in a 10nm size pore for a 2:1 electrolyte. NaCl concentration is 10 mM
and Ca(OH), 10 mM. Figures are the average of 10 GCMC simulations with 200 Monte Carlo steps each.
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From transport to ionic effective diffusivity

+ V=0

oC;

Medium length
Mean concentration difference

Effective diffusivity at%r

Species flux per unit cross-
the nanoscale C-S-H

section in steady state
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