Multiscale poromechanics of mature cement pastes: Expansion during isothermal re-wetting

Nabor Jimenez Segura, Christian Hellmich, Bernhard Pichler

TU Wien – Vienna University of Technology, Austria Institute for Mechanics of Materials and Structures

Nabor.Segura@tuwien.ac.at

Motivation

Desorption/adsorption cycles result in hysteresis of water content and macroscopic volume changes

> Other constituents of concrete do not exhibit this behavior

Cracking

Internal stresses

3 O

Experiments by Maruyama: data from first isothermal re-wetting

 $=C \epsilon$

Aim: Development of multiscale hygro-poro-elastic model

- Input: water content as a function of relative humidity
- > Aim: predicting expansion as a function of relative humidity

Volume fractions

Hierarchical organization of mature cement pastes + properties of solid constituents

 $C \epsilon$

[Wang et al., Cement & Concrete Research, 2018] http://doi.org/csgw

 $C \epsilon$

thickness of adsorbed water layer

t = 0.385nm $-\ln[-\ln(RH)] \cdot 0.189$ nm [Badmann et al., J. Colloid Interf. Sci., 1981]

radius distinguishing air-/water-filled pores

$$r_{lg} = -\frac{2\gamma^{lg}v_m\cos\theta}{\ln(RH)\ RT} + t$$

Kelvin-Cohan equation

Effective pore pressures acting on solid skeleton

1) Effective pressure of individual pores:

Combination with

• Kelvin-Laplace equation minimization of Gibbs free energy

$$p_g - p_\ell = -\ln(RH)\frac{RT}{v_m}$$

• Young's equation
$$\gamma^{\ell g} \cos \theta = \gamma^{sg} - \gamma^{s\ell}$$
 equilibrium of forces

• Berthelot's state equation $\gamma^{s\ell} = \gamma^{\ell g} + \gamma^{sg} - 2\sqrt{\gamma^{\ell g} \gamma^{sg}}$ energy of adhesion $W_{sl} = \sqrt{W_{ss}W_{ll}}$ $\left(\ln(RH)\frac{RT}{2} \cdots r < r_{\ell} \right)$

Effective pressure of individual pores:

$$p(r) = \begin{cases} \ln(RH)\frac{RT}{\nu_m} & \cdots & r \le r_{\ell g} \\ -\frac{2\gamma^{\ell g}}{r-t} & \cdots & r > r_{\ell g} \end{cases}$$

 $p(r) = \begin{cases} p_{\ell} - \frac{2\gamma^{sr}}{r-t} & \cdots & r \le r_{\ell g} \\ p_{q} - \frac{2\gamma^{sg}}{r-t} & \cdots & r > r_{\ell g} \end{cases}$

2) Average effective pore pressure of gel and capillary pore families:

$$p_k = \int_0^\infty p(r) \,\phi_k^{pdf}(r) \,\mathrm{d}r \,, \quad k \in [gpor; cpor] \qquad \phi_k^{pdf}(r) \,\dots \, \text{pore size distribution}$$

1

Identification of pore size distributions: adsorption porosimetry

1

Pore size probability distribution
$$\phi_k^{pdf}(r) = \frac{1}{R_k} \exp\left(-\frac{r}{R_k}\right)$$
, $k \in [gpor; cpor]$
Modeled saturation degree
 $S_r^{mod} = \frac{\Delta m_{H_2O}(RH) + m_{H_2O}^{exp}(RH = 20\%)}{m_{dry}}$
Experimental saturation degree
 $S_r^{exp} = \frac{m_{sample}(RH) - m_{dry}}{m_{dry}}$
Identification of characteristic pore radii:
 $\epsilon_{SRSS}(R_{gpor}, R_{cpor}) = \sqrt{\frac{1}{n}\sum_{i=1}^{n} [S_r^{mod}(RH_i, R_{gpor}, R_{cpor}) - S_r^{exp}(RH_i)]^2} \rightarrow min$

characteristic radii

Ν

 $C \epsilon$

[Wang et al., Cement & Concrete Research, 2018] http://doi.org/csgw

Identification of pore radii

 $C \epsilon$

Institute for Mechanics of Materials and Structures TU Wien – Vienna University of Technology, Austria

Homogenization of eigenstressed elastic composites

Microscopic input

Macroscopic expansion (eigenstrain)

homogenized stiffness

homogenized eigenstress

3 C

$$\forall \underline{x} \in V_k : \begin{cases} \mathbb{C}(\underline{x}) = \mathbb{C}_k \\ \boldsymbol{\sigma}^E(\underline{x}) = \boldsymbol{\sigma}_k^E \end{cases}, \quad f_k = \frac{V_k}{V}, \quad k \in [m; i] \end{cases}$$

$$\mathbf{E}_{\mathrm{hom}}^{E} = -\mathbb{C}_{\mathrm{hom}}^{-1}: \mathbf{\Sigma}_{\mathrm{hom}}^{E}$$

 $\mathbb{C}_{\text{hom}} = f_m \mathbb{C}_m : \mathbb{A}_m + f_i \mathbb{C}_i : \mathbb{A}_i$

$$\boldsymbol{\Sigma}_{\text{hom}}^{E} = f_{m}\boldsymbol{\sigma}_{m}^{E}:\mathbb{A}_{m} + f_{i}\boldsymbol{\sigma}_{i}^{E}:\mathbb{A}_{i}$$

 \mathbb{A}_k – strain concentration tensor

Bottom-up		constituents	volume	stiffness	eigenstress	homog.	homog.
homogenization			fraction			stiffness	eigenstress
hydrate		solid hydrates	f_{hyd}^{gel}	\mathbb{C}_{hyd}	$\sigma^{E}_{hyd}=0$		TE
gel		gel pores	f_{gpor}^{gel}	$\mathbb{C}_{gpor} = 0$	$oldsymbol{\sigma}^e_{gpor}=-p_{gpor}1$	Cgel	L gel
hydrate		hydrate gel	f^{hf}_{gel}	\mathbb{C}_{gel}	$\left(\mathbf{\Sigma}_{gel}^{E} ight)$		F
foam		capillary pores	f^{hf}_{cpor}	$\mathbb{C}_{cpor} = 0$	$oldsymbol{\sigma}^e_{cpor}=-p_{cpor}1$	\mathbb{C}_{hf}	Σ_{hf}^{L}
cement		hydrate foam	f_{hf}^{cp}	\mathbb{C}_{hf}	Σ_{hf}^{E}	C	⊾ E
paste		clinker	f^{cp}_{clin}	\mathbb{C}_{clin}	$\boldsymbol{\sigma}_{clin}^{E}=0$	\mathbb{C}_{cp}	∠ _{cp}

ERICA Mid-Term Review Meeting | 25th September 2019, Bologna

Prediction of macroscopic expansion resulting from changes of pore pressure $(\sigma_{hyd}^E = 0)$

3 O =

Changes of pore pressures

- contribute significantly to macroscopic expansion
- important but not sufficient

- ➢ Hydrates are swelling due to increase of RH
- Aim: identify RH-driven expansion of solid hydrates

Top-down identification of eigenstress of solid hydrates $\sigma_{h\nu d}^{E}(RH)$

Bottom-up		constituents	volume	stiffness	eigenstress	homog.	homog.
homogenization			fraction			stiffness	eigenstress
hydrate		solid hydrates	f_{hyd}^{gel}	\mathbb{C}_{hyd}	$\boldsymbol{\sigma}_{hyd}^{E} = \boldsymbol{\sigma}_{hyd}^{E}(RH)$		$\mathbf{\nabla}^{E}$
gel		gel pores	f_{gpor}^{gel}	$\mathbb{C}_{gpor} = 0$	$oldsymbol{\sigma}^e_{gpor}=-p_{gpor}1$	Cgel	L gel
hydrate		hydrate gel	f^{hf}_{gel}	\mathbb{C}_{gel}	Σ_{gel}^{E}		
foam		capillary pores	f^{hf}_{cpor}	$\mathbb{C}_{cpor} = 0$	$oldsymbol{\sigma}^e_{cpor}=-p_{cpor}1$	\mathbb{C}_{hf}	Σ_{hf}^{L}
cement		hydrate foam	f_{hf}^{cp}	\mathbb{C}_{hf}	Σ_{hf}^{E}	C	$\mathbf{\nabla}^{E}$
paste		clinker	f_{clin}^{cp}	\mathbb{C}_{clin}	$\boldsymbol{\sigma}_{clin}^{E}=0$	\mathbb{C}_{cp}	4 <i>cp</i>

 $C \epsilon$

Institute for Mechanics of Materials and Structures TU Wien – Vienna University of Technology, Austria

Top-down identification of eigenstress of solid hydrates $\sigma_{hvd}^E(RH)$

 $=C \epsilon$

Identification result

Conclusions

- Changes of relative humidity induce changes of effective pore pressures acting on the solid skeleton
- Changes of pore pressures induced by changes of relative humidity explain experimentally measured expansion of cement paste only partly
- Newly quantified RH-driven expansion of solid hydrates

Institute for Mechanics of Materials and Structures TU Wien – Vienna University of Technology, Austria

Outreach: IES Alhama, Corella, Spain (29/3/2019)

Secondment: Saint Gobain, short visit October 2018 Heidelberg, starting February 2020

 $\sigma = C \epsilon$