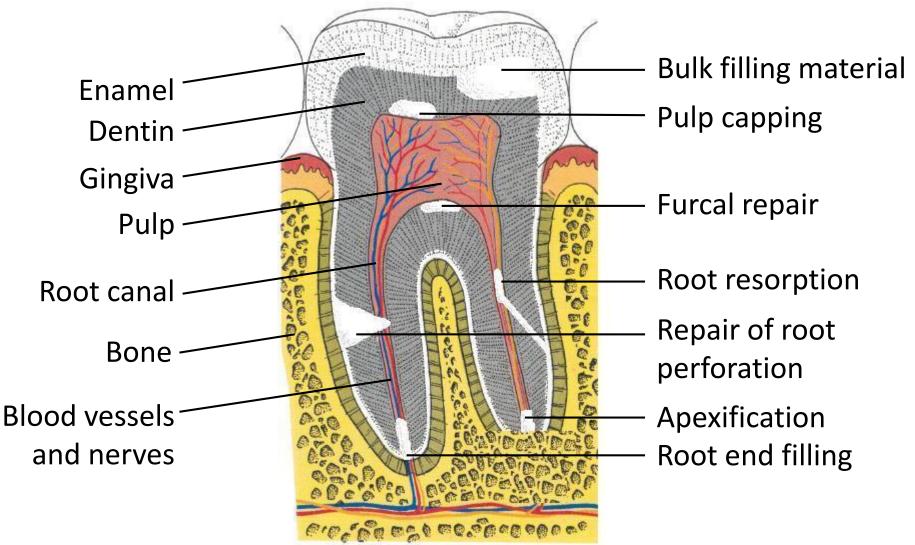
Mechanical properties of Cementitious Materials Used in Dentistry

Petr Dohnalík, Olaf Lahayne, Christian Hellmich, Bernhard Pichler

Institute for Mechanics of Materials and Structures TU Wien – Vienna University of Technology, Austria

e-mail: petr.dohnalik@tuwien.ac.at

 $\sigma = C \epsilon$


tel: +43 1 58801 20227

Mid-Term Project Review Meeting, September 25th, 2019, Bologna, Italy

Institute for Mechanics of Materials and Structures TU Wien – Vienna University of Technology, Austria

Natural tooth and clinical application of "Bio-Silicates"

 $\sigma = C \epsilon$

Source: https://is.muni.cz/do/fsps/e-learning/zaklady_anatomie/zakl_anatomie_II/pics/2obr-5.jpg

Mid-Term Project Review Meeting, September 25th, 2019, Bologna, Italy

Biodenine[©]

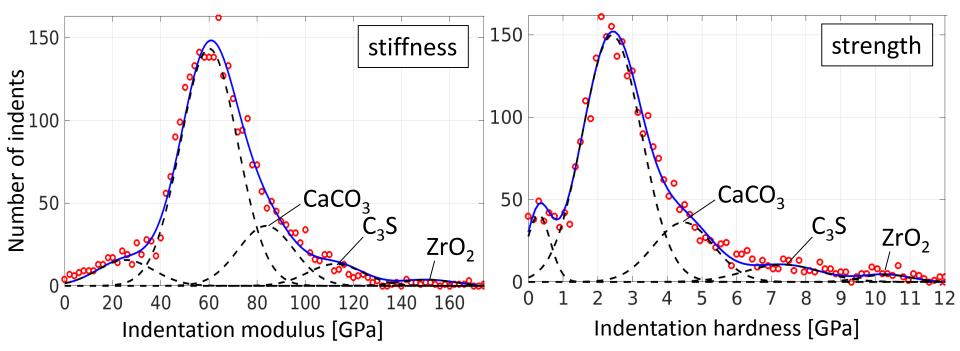
Dry binder powder:

 $\sigma = C \epsilon$

- 3CaO SiO₂ = main hydraulic phase
- CaCO₃ = finely ground filler
- ZrO₂ = radiopacifier
- > Mixing liquid:
 - Water
 - Superplasticizer
 - Accelerator

Source: https://www.septodont.com/

- Setting in 12 minutes; close-to-final properties after 24 hours
- Aim of the project: Upscaling of mechanical properties from scale of grid nanoindentation to the application scale



Institute for Mechanics of Materials and Structures TU Wien – Vienna University of Technology, Austria

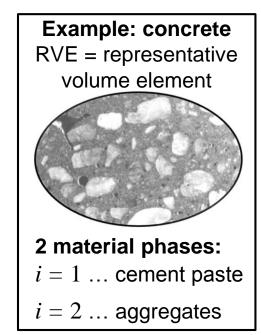
Grid nanoindentation into mature Biodentine[©]

5748 indents, maximum force = 1 mN

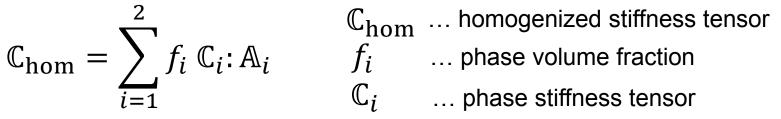
 $\sigma = C \epsilon$

- > Modal analysis: five material phases identified.
- Upscaling: methods from continuum micromechanics

Scale transitions in heterogeneous materials

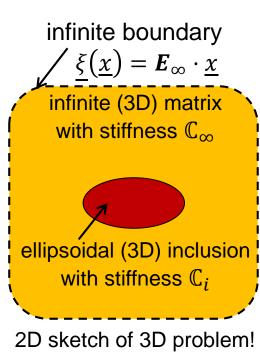

Loading: uniform strain boundary conditions:

 $\sigma = C \epsilon$


- $\underline{\xi}(\underline{x}) = \mathbf{E} \cdot \underline{x} \quad \underline{\xi} \quad \dots \text{ prescribed displacements}$
 - *E* ... strain imposed on RVE
 - \underline{x} ... position vector

micro-to-MACRO stiffness homogenization

 $\varepsilon_i = \mathbb{A}_i: E \quad \varepsilon_i \dots \text{ average } \underline{\text{microscopic phase strain}} \\ \mathbb{A}_i \dots \text{ phase strain concentration tensor}$


MACRO-to-micro strain concentration

Strain concentration tensors \mathbb{A}_i allow for scale transitions!

Eshelby-problem = basis for homogenization methods

Non-trivial three-dimensional strain concentration problem ... with *analytical* solution

 $\sigma = C \epsilon$

$$\varepsilon_i = [\mathbb{I} + \mathbb{P}_i^{\infty}: (\mathbb{C}_i - \mathbb{C}_{\infty})]^{-1}: \mathbf{E}_{\infty}$$

- \mathcal{E}_i ... uniform deformation of the inclusion
- I ... identity matrix
- \mathbb{P}_i^{∞} ... morphology tensor (accounting for shape and orientation of inclusion)
- \mathbb{C}_i ... stiffness of inclusion
- \mathbb{C}_∞ ... stiffness of infinite matrix

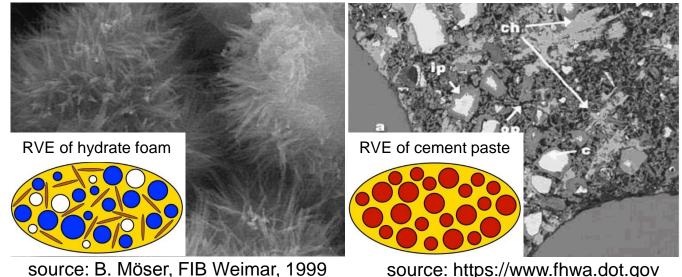
 ${m E}_\infty$... remotely imposed uniform deformation

Link Eshelby problem to heterogeneous materials

C E

 $\sigma =$

- One Eshelby-problem for each constituent -> inclusion
- Strain in inclusion := average strain of constituents
- \succ Link between E_{∞} and E by enforcing strain-average-rule


Estimated phase strain concentration tensors:

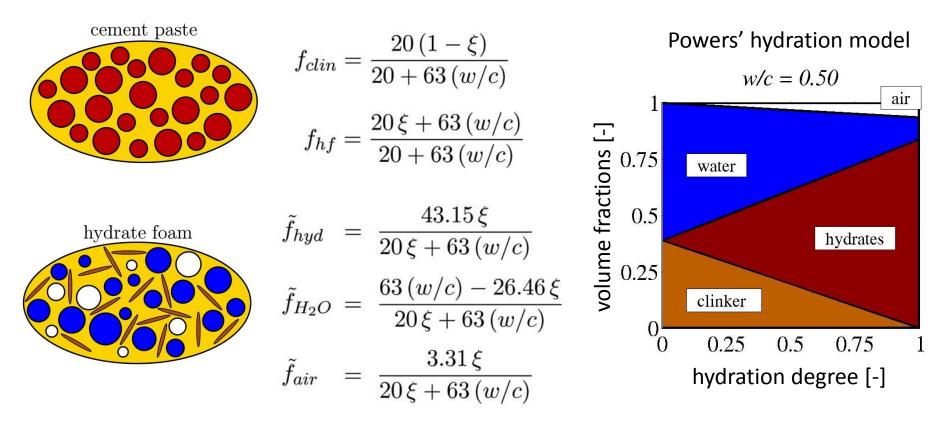
$$A_{i} = [\mathbb{I} + \mathbb{P}_{i}^{\infty}: (\mathbb{C}_{i} - \mathbb{C}_{\infty})]^{-1} \left[\sum_{j=1}^{n} f_{j} [\mathbb{I} + \mathbb{P}_{j}^{\infty}: (\mathbb{C}_{j} - \mathbb{C}_{\infty})]^{-1} \right]^{-1}$$
phase volume fractions
elastic stiffness tensors of phases
phase interaction
phase interaction

- Matrix-inclusion composite $\mathbb{C}_{\infty} = \mathbb{C}_m$... Mori-Tanaka scheme
- Polycrystalline composite $\mathbb{C}_{\infty} = \mathbb{C}_{hom} \dots$ Self-consistent scheme

Cement pastes: two-scale materials

 $\sigma = C \epsilon$

source: https://www.fhwa.dot.gov


2D sketches showing qualitative properties of 3D RVEs!

Qualitative / quantitative key properties of material phases

Volume fractions (*evolving* with hydration!) Characteristic shape Interaction Mechanical properties (material *constants*!)

Evolving volume fractions of microscopic material phases

 $\sigma = C \epsilon$

Functions of composition: w/c ... initial water-to-cement mass ratio and maturity: ξ ... degree of hydration

Isotropic phase elasticity + strength *constants*

 $\sigma = C \epsilon$

	hydrate gel needles	cement grains
bulk modulus	18.7 GPa	116.7 GPa
shear modulus	11.8 GPa	53.8 GPa
cohesion	50 MPa	
angle of internal friction	12°	

Outlook

- Demonstrate similarities and differences between cement pastes used in dentistry and in construction
- Indicate directions for further improving the mechanical properties of cement paste used in the construction sector

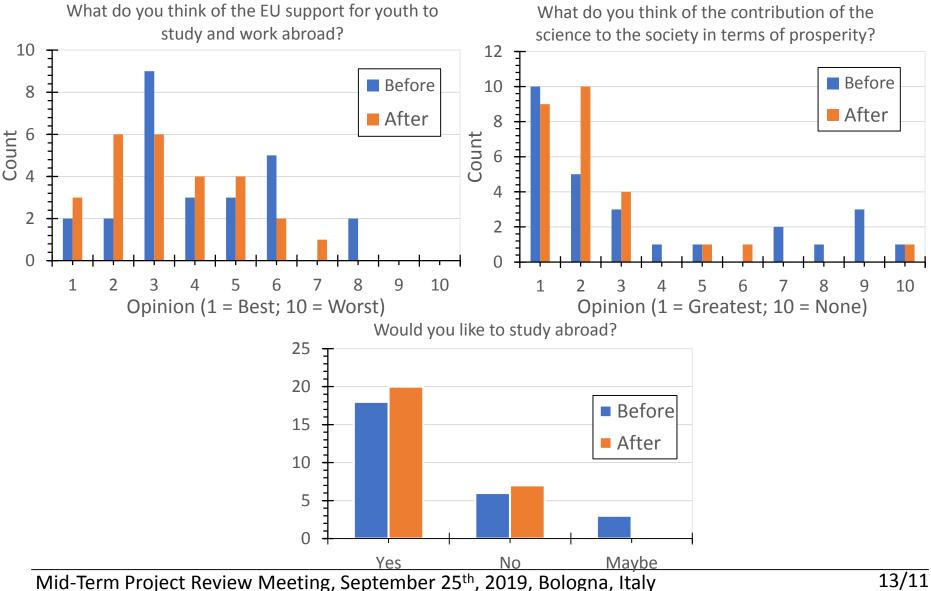
Outreach: Sep 18, 2019, SPŠE Olomouc, Czech Republic

 $\sigma = C \epsilon$

Industrial secondments: Septodont, short visit in April 2018 Septodont, start in March 2020

Thank you for your attention

Mid-Term Project Review Meeting, September 25th, 2019, Bologna, Italy



Institute for Mechanics of Materials and Structures TU Wien – Vienna University of Technology, Austria

Appendix

Public outreach evaluation

 $\sigma = C \epsilon$

