

Objectives:

The purpose of this research is to study adsorption of ions such as magnesium, aluminum and sulfate onto the surface and into the structure of C-S-H by combining molecular dynamic and metadynamics simulations.

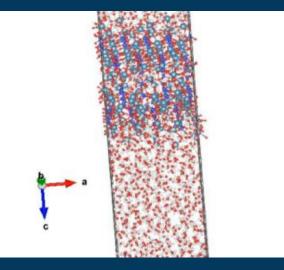
Why Molecular Dynamics?

C-S-H is the glue of cement. Simulation of C-S-H by means of molecular dynamic simulation help understand the mechanism of adsorption of ions and consequently changes in morphology of C-S-H since experiments have shown that ions such as sulfate dramatically change the morphology of C-S-H

Simulations and Force Fields

To perform molecular dynamics simulations a force field is required. A force field is a set of inter-atomic potentials that describes the behavior of a system. This work uses a LAMMPS code and three ERICA force fields to perform simulations.

Molecular Dynamics of C-S-H


Masood Valavi Ecole Polytechnique Fédérale de Lausanne, CH

ERICA Force Fields

We developed three force fields, ERICA FF1 is a combination of three force fields, ERICA FF2 is a combination of six and FF3 is a combination of eight different force fields. Additionally force fields were validated by the simulation of many cementitious systems, reaction enthalpies and simulations of ions in water.

How does ERICA FF2 simulate toborite?

Tobomorite is a natural mineral which is very similar to C-S-H. Experimental findngs ¹ show that Ca in the main layer of tobomorite has a 7-fold coordination by oxygen of silicon and oxygen of hydroxyl. ERICA FF2, a force field validated by the simulation of 14 cementitious systems and 17 reaction enthalpies, correctly simulates the 7-fold coordination of tobomorite.

¹ I.G. Richardson, CCR, 34, 9, pp. 1733-1777 (2004)

For further information please refer to the following link: https://www.erica-etn.eu/ This project has received funding by the EU H2020-MSCA-ITN-2017 Grant Agreement no. 764691